
Si riportino nella seguente tabella i risultati normalizzati {r##} indicati nel seguito, con precisione di **quattro** cifre significative esatte.

Cognome	
Nome	
Matricola	
{r01}	
{r02}	
{r03}	
{rxx}	

I valori dei parametri binari i,j,k sono definiti sulla base delle ultime tre cifre del numero di matricola del candidato, in particolare:

- **i=0** se il terzultimo numero è pari o zero, **i=1** se è dispari;
- **j=0** se il penultimo numero è pari o zero, **j=1** se è dispari;
- **k=0** se l'ultimo numero è pari o zero, **k=1** se è dispari.

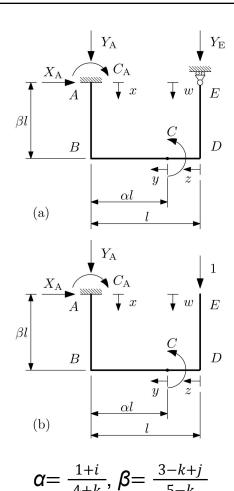
Ad esempio, alla matricola 235786 sono associati i=1, j=0 e k=0.

Considerare la struttura a "T" in figura, composta da travi di rigidezza flessionale EJ e caricata sul tratto AC da un carico distribuito uniforme di entità q.

Calcolare le reazioni vincolari

 $X_B=q\ell \cdot \{r01\}, Y_B=q\ell \cdot \{r02\}, Y_D=q\ell \cdot \{r03\}.$ Esprimere quindi in funzione del carico distribuito q il momento flettente sui tratti DC, BC e CA

If momento flettente sui tratti DC, BC e CA $\begin{array}{ll} \text{M}_{\text{f,DC}} = & \text{q} \cdot (\{\texttt{r04}\} \cdot \texttt{x}^2 + \{\texttt{r05}\} \cdot \texttt{x} \cdot \textit{l} + \{\texttt{r06}\} \cdot \textit{l}^2) \\ \text{M}_{\text{f,BC}} = & \text{q} \cdot (\{\texttt{r07}\} \cdot \texttt{y}^2 + \{\texttt{r08}\} \cdot \texttt{y} \cdot \textit{l} + \{\texttt{r09}\} \cdot \textit{l}^2) \\ \text{M}_{\text{f,AC}} = & \text{q} \cdot (\{\texttt{r10}\} \cdot \texttt{z}^2 + \{\texttt{r11}\} \cdot \texttt{z} \cdot \textit{l} + \{\texttt{r12}\} \cdot \textit{l}^2) \\ \text{definito positivo per convenzione se porta in trazione le fibre superiori (tratti orizzontali DC, BC), o se porta in trazione le fibre al fianco sinistro (tratto verticale AC). \\ \end{array}$


Calcolare infine il modulo dello sforzo di taglio ai punti A, B, C (inteso come punti C', C" e C""), D,

$$T_A = q \ell \cdot \{r13\}, T_B = q \ell \cdot \{r14\},$$

 $T_{C'} = q \ell \cdot \{r15\}, T_{C''} = q \ell \cdot \{r16\},$

$$T_{c} = q \ell \cdot \{r17\}, T_{D} = q \ell \cdot \{r18\},$$

e il valore in modulo dello sforzo normale massimo sulla struttura,

$$N_{\text{max}}=q\boldsymbol{\ell}\cdot\{r19\}$$
.

Considerare la struttura staticamente indeterminata di figura (a), caricata dalla coppia concentrata *C*.

Al fine di risolvere la struttura si faccia riferimento alla struttura principale di figura (b). In particolare:

- considerare la struttura principale di figura (b), soggetta <u>alla sola coppia concentrata C</u>; riportare gli associati valori del momento flettente ai punti A,B,D,E,

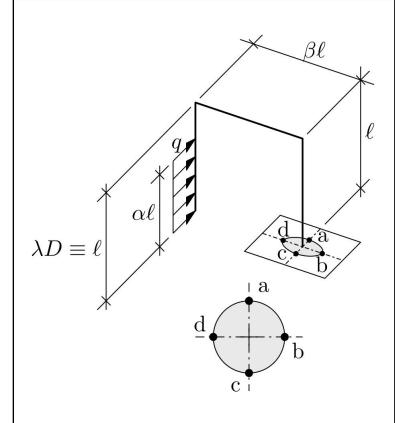
$$M_{fA}=C \cdot \{r20\}, M_{fB}=C \cdot \{r21\}, M_{fD}=C \cdot \{r22\}, M_{fE}=C \cdot \{r23\}, M_{fB}=C \cdot$$

assunti positivi qualora siano portate in trazione le fibre esterne alla struttura ad "U" ABDE.

- considerare quindi la struttura principale di figura (b) soggetta ora <u>alla sola forza esplorativa</u> unitaria di figura, e riportare gli associati valori del momento flettente ai punti A.B.D.E.

$$M_{fA1}=1 \cdot \ell \cdot \{r24\}, M_{fB1}=1 \cdot \ell \cdot \{r25\}, M_{fD1}=1 \cdot \ell \cdot \{r26\}, M_{fE1}=1 \cdot \ell \cdot \{r27\},$$

sempre positivi qualora siano portate in trazione le fibre esterne alla struttura ad "U" ABDE.


Noto che la reazione vincolare iperstatica ha espressione:

$$Y_E = C/\ell (6 \cdot \beta - 3 \cdot \alpha^2 + 6 \cdot \alpha)/(6 \cdot \beta + 2)$$

calcolare le rimanenti reazioni vincolari

$$X_A = C/\ell \cdot \{r28\}, Y_A = C/\ell \cdot \{r29\}, C_A = C \cdot \{r30\}$$

e il valore massimo in modulo del momento flettente su tale struttura: $M_{fmax}=C \cdot \{r31\}$.

$$\alpha = \frac{1+i}{4+k}$$
, $\beta = \frac{3-k+j}{5-k}$, $\lambda = 2 + 2i + j$

Si consideri la struttura a portale in figura, incastrata ad una base e caricata da un carico distribuito q al montante opposto, e costituita da un profilato a sezione circolare piena di diametro D.

Si consideri in particolare la sezione all'incastro evidenziata in figura; calcolare per tale sezione le tensioni massime (in modulo) indotte dalle sollecitazioni di:

- sforzo normale, σ_N={r32}·q/D
- taglio, τ_T={r33} · q/D
- momento flettente, σ_{Mf}={r34}·q/D
- momento torcente, $\tau_{Mt} = \{r35\} \cdot q/D$

Calcolare quindi la tensione σ assiale (con segno) e la tensione tangenziale τ (in modulo) ai punti

- punto c: $\sigma_c = \{r36\} \cdot q/D$, $\tau_c = \{r37\} \cdot q/D$
- punto d: $\sigma_D = \{r38\} \cdot q/D$, $\tau_D = \{r39\} \cdot q/D$

Calcolare infine agli stessi punti i valori (con segno) delle tensioni principali

- punto c: $\sigma_1 = \{r40\} \cdot q/D$, $\sigma_2 = \{r41\} \cdot q/D$
- punto d: $\sigma_1 = \{r42\} \cdot q/D$, $\sigma_2 = \{r43\} \cdot q/D$

Nome:	Cognome:	Matricola:
{r01}	{r18}	{r35}
{r02}	{r19}	{r36}
{r03}	{r20}	{r37}
{r04}	{r21}	{r38}
{r05}	{r22}	{r39}
{r06}	{r23}	{r40}
{r07}	{r24}	{r41}
{r08}	{r25}	{r42}
{r09}	{r26}	{r43}
{r10}	{r27}	{r44}
{r11}	{r28}	{r45}
{r12}	{r29}	{r46}
{r13}	{r30}	{r47}
{r14}	{r31}	{r48}
{r15}	{r32}	{}
{r16}	{r33}	{}
{r17}	{r34}	{}

Niente di interessante su questo

schermo: guarda il foglio!!