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0.1 Basic formulation for plates and shells
A necessary condition for applying the plate/shell model framework
to a deformable body is that a geometrical midsurface might be, if
only loosely, recognized for such a body. Then, an iterative refinement
procedure1 may be applied to such tentative midsurface guess.

Then, material should be observed as [piecewise-]homogeneous, or
slowly varying in mechanical properties while moving at a fixed distance
from the midsurface.

Of the two outer surfaces, one has to be defined as the upper or top
surface, whereas the other is named lower ot bottom, thus implicitly
orienting the midsurface normal towards the top.

Finally, the body should result fully determined based on a) its
midsurface, b) its pointwise thickness, and c) the through-thickness
distribution of the constituent materials.

Actually, the geometrical midsurface is of little significance if the
material distribution is not symmetric2; such midsurface, in fact, ex-
hibits no relevant properties in general. Its definition is nevertheless
pretty straighforward.

In the present treatise, a more general reference surface definition is
preferred to its median geometric counterpart; in particular, an offset
term is considered that pointwisely shifts the geometric midsurface with
respect to the reference surface. A positive offsets shifts the midsurface
towards the top.

With the introduction of the offset term, the reference surface may
be arbitrarily positioned with respect to the body itself; as an example,
an offset set equal to plus or minus half the thickness makes the refer-
ence surface correspondent to the bottom or top surfaces, respectively.

Such offset term becomes fundamental in the Finite Element (FE)
shell implementation, where, in fact, the reference plane is uniquely
defined by the position of the nodes, whereas the offset arbitrarily
shifts the geometrical midsurface.

1Normal segments may be cast from each point along the midsurface, that end
on the outer body surfaces. The midpoint locus of these segments redefines the
midsurface itself.

2If the unsimmetric laminate is composed by isotropic layers, a reference plane
may be obtained for which the B membrane-to-bending coupling matrix vanishes;
a similar condition may not be verified in the presence of orthotropic layers.
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In the case of limited3 curvatures, and for considerations whose
scope is local, the tangent reference plane may be employed in place of
the possibly curve reference surface, thus locally reducing the general
shell treatise to its planar, plate counterpart.

The P displacement components may be defined as a function of
the motion of its projection on the reference plane Q. Such Q point is
named reference point for the through-thickness segment it belongs to.

𝑢𝑃 = 𝑢 + 𝑧 (1 + ̌𝜖𝑧) sin 𝜑 (1)
𝑣𝑃 = 𝑣 − 𝑧 (1 + ̌𝜖𝑧) sin 𝜃 (2)
𝑤𝑃 = 𝑤 + 𝑧 ((1 + ̌𝜖𝑧) cos(𝜑) cos(𝜃) − 1) (3)

The ̌𝜖𝑧 average 𝑧 strain term is defined based on the accumulation
of the Poisson shrinkage (or elongation) along the PQ segment, i.e.

̌𝜖𝑧(𝑧) = 1
𝑧 ∫

𝑧

0
𝜖𝑧𝑑𝜍 (4)

= 1
𝑧 ∫

𝑧

0
− 𝜈

1 − 𝜈 (𝜖𝑥 + 𝜖𝑦) 𝑑𝜍 (5)

The stress component 𝜎𝑧 which is normal to the reference surface
is assumed to be either zero or negligible4.

Such displacement components may be linarized with respect to the
small rotations and small 𝜖𝑧 strain hypotheses, thus obtaining

3with respect to thickness
4Such assumption is coherent with the free surface conditions at the top and the

bottom skins, and with the moderate thickness of the elastic body, that allows only
a narrow deviation from the boundary values.

In fact, the equilibrium of a partitioned, through-thickness material segment re-
quires that

𝜎𝑧(𝑧) = − ∫
𝑧

−ℎ/2+𝑜

𝜕𝜏𝑧𝑥
𝜕𝑥 + 𝜕𝜏𝑦𝑧

𝜕𝑦 𝑑𝑧 = + ∫
+ℎ/2−𝑜

𝑧

𝜕𝜏𝑧𝑥
𝜕𝑥 + 𝜕𝜏𝑦𝑧

𝜕𝑦 𝑑𝑧,

where 𝜏𝑧𝑥, 𝜏𝑦𝑧 are the interlaminar, out-of-plane shear stress components, whose
in-plane gradient is limited.
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Figure 1: Relevant dimensions for describing the deformable plate kine-
matics.
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𝑢𝑃 = 𝑢 + 𝑧𝜑 (6)
𝑣𝑃 = 𝑣 − 𝑧𝜃 (7)
𝑤𝑃 = 𝑤 (8)

According to such linearized expression, the kinematic of the P
points originally5 laying on a through-thickness segment that is normal
at Q to the reference surface may be described as that of a rigid body.
The natural shear related warping is either excluded or neglected, along
with the motion of the P points along the segment due to ̌𝜖𝑧.

Also, the behaviour of such a segment is coherent with its rigid
body modeling from the external loads point of view; in particular the
external actions act on the plate deformable body only through their
through-thickness resultants, and no stress/strain components or work
are associated by the shell framework to wall squeezing actions, e.g.
laminations.

Relation between the normal displacement 𝑥, 𝑦 gradient (i.e. the
deformed plate slope), the rotations and the out-of-plane, interlaminar,
averaged shear strain components.

𝜕𝑤
𝜕𝑥 = ̄𝛾𝑧𝑥 − 𝜑 (9)

𝜕𝑤
𝜕𝑦 = ̄𝛾𝑦𝑧 + 𝜃 (10)

Strains at point P.

𝜖𝑥 = 𝜕𝑢𝑃
𝜕𝑥 = 𝜕𝑢

𝜕𝑥 + 𝑧 𝜕𝜑
𝜕𝑥 (11)

𝜖𝑦 = 𝜕𝑣𝑃
𝜕𝑦 = 𝜕𝑣

𝜕𝑦 − 𝑧 𝜕𝜃
𝜕𝑦 (12)

𝛾𝑥𝑦 = 𝜕𝑢𝑃
𝜕𝑦 + 𝜕𝑣𝑃

𝜕𝑥 (13)

= (𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥) + 𝑧 (+𝜕𝜑
𝜕𝑦 − 𝜕𝜃

𝜕𝑥) (14)

5i.e. in the undeformed configuration
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Generalized plate strains: membrane strains

̄ϵ = ⎛⎜⎜
⎝

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥

⎞⎟⎟
⎠

= ⎛⎜
⎝

̄𝜖𝑥
̄𝜖𝑦

̄𝛾𝑥𝑦

⎞⎟
⎠

(15)

Generalized plate strains: curvatures.

κ = ⎛⎜⎜
⎝

+𝜕𝜑
𝜕𝑥

− 𝜕𝜃
𝜕𝑦

+𝜕𝜑
𝜕𝑦 − 𝜕𝜃

𝜕𝑥

⎞⎟⎟
⎠

= ⎛⎜
⎝

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

⎞⎟
⎠

(16)

Compact form for the strain components at P.

ϵ = ̄ϵ + 𝑧 κ (17)
Hook law for an isotropic material, under plane stress conditions.

D = 𝐸
1 − 𝜈2

⎛⎜
⎝

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎞⎟
⎠

(18)

Normal components for stress and strain, the latter for the isotropic
material case only.

𝜎𝑧 = 0 (19)

𝜖𝑧 = − 𝜈
1 − 𝜈 (𝜖𝑥 + 𝜖𝑦) (20)

Stresses at P.
σ = D ϵ = D ̄ϵ + 𝑧 D κ (21)

Membrane (direct and shear) stress resultants (stress flows).

q = ⎛⎜
⎝

𝑞𝑥
𝑞𝑦
𝑞𝑥𝑦

⎞⎟
⎠

= ∫
ℎ

σ 𝑑𝑧 (22)

= ∫
ℎ

D 𝑑𝑧
⏟

A

̄ϵ + ∫
ℎ

D 𝑧𝑑𝑧
⏟

B

κ (23)
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Figure 2: Positive 𝜅𝑥𝑦 torsional curvature for the plate element. Sub-
figure (a) shows the positive 𝛾𝑥𝑦 shear strain at the upper surface, the
(in-plane) undeformed midsurface, and the negative 𝛾𝑥𝑦 at the lower
surface; the point of sight related to subfigures (b) to (d) are also ev-
idenced. 𝜃 and 𝜑 rotation components decrease with 𝑥 and increase
with 𝑦, respectively, thus leading to positive 𝜅𝑥𝑦 contributions. As
shown in subfigures (c) and (d), the torsional curvature of subfigure (b)
evolves into two anticlastic bending curvatures if the reference system
is aligned with the square plate element diagonals, and hence rotated
by 45∘ with respect to 𝑧.
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Figure 3: XXX

Bending and torsional moment stress resultants (moment flows).

m = ⎛⎜
⎝

𝑚𝑥
𝑚𝑦
𝑚𝑥𝑦

⎞⎟
⎠

= ∫
ℎ

σ 𝑑𝑧 (24)

= ∫
ℎ

D 𝑧𝑑𝑧
⏟

B ≡ B T

̄ϵ + ∫
ℎ

D 𝑧2𝑑𝑧
⏟⏟⏟⏟⏟

C

κ (25)

Cumulative generalized strain - stress relations for the plate (or for
the laminate)

( q
m ) = ( A B

B T C ) ( ̄ϵ
κ ) (26)

Hook law for the orthotropic material in plane stress conditions,
with respect to principal axes of orthotropy;

D 123 = ⎛⎜⎜
⎝

𝐸1
1−𝜈12𝜈21

𝜈21𝐸11−𝜈12𝜈21
0

𝜈12𝐸2
1−𝜈12𝜈21

𝐸21−𝜈12𝜈21
0

0 0 𝐺12

⎞⎟⎟
⎠

(27)
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⎛⎜
⎝

𝜎1
𝜎2
𝜏12

⎞⎟
⎠

= T 1
⎛⎜
⎝

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎞⎟
⎠

⎛⎜
⎝

𝜖1
𝜖2
𝛾12

⎞⎟
⎠

= T 2
⎛⎜
⎝

𝜖𝑥
𝜖𝑦

𝛾𝑥𝑦

⎞⎟
⎠

(28)

where

T 1 = ⎛⎜
⎝

𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2
⎞⎟
⎠

(29)

T 2 = ⎛⎜
⎝

𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2
⎞⎟
⎠

(30)

𝛼 is the angle between 1 and x;

𝑚 = cos(𝛼) 𝑛 = sin(𝛼) (31)

The inverse transformations may be obtained based on the relations

T −1
1 (+𝛼) = T 1(−𝛼) T −1

2 (+𝛼) = T 2(−𝛼) (32)

Finally

σ = D ϵ D ≡ D 𝑥𝑦𝑧 = T −1
1 D 123 T 2 (33)

Notes:

• Midplane is ill-defined if the material distribution is not symmet-
ric; the geometric midplane (i.e. the one obtained by ignoring the
material distribution) exhibits no relevant properties in general.
Its definition is nevertheless pretty straighforward.

• If the unsimmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the B membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.

• In the present contribution, the reference plane is preferred to the
usual geometric midplane for expressing the displacement field,
even in the case of homogeneous material or symmetric laminates;
in FE shell element implementation, in fact, the reference plane
is uniquely defined by the position of the nodes, whereas an offset
term may arbitrarily shift the geometrical midsurface.
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• Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
through the thickness.
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Figure 4: The not-so-trivial four point bending case.
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