

Dipartimento di Ingegneria "Enzo Ferrari"

Progettazione Assistita di Organi di Macchine

Sara Mantovani sara.mantovani@unimore.it

Agenda

MSC Marc Mentat: Select entities

- Method & Mode;
- Store;
- Identify set.

Thin-walled profile in torsion

- Opened vs closed cross-section;
- Mesh convergence.

References

Agenda

MSC Marc Mentat: Select entities

- Method & Mode;
- Store;
- Identify set.

Thin-walled profile in torsion

- Opened vs closed cross-section;
- Mesh convergence.

References

MENU: SELECT

IESH GENE	RATION					
IODES	ADD	RE	CM .	EDIT	SHOW	
ELEMS	ADD	RE	CM .	EDIT	SHOW	
PTS	ADD	RE	CM .	EDIT	SHOW	
CRVS	ADD	RE	ΞM	EDIT	SHOW	
SRFS	ADD	RE	ΞM	EDIT	SHOW	
SOLIDS	ADD	RE	CM		SHOW	
BETWEEN N	IODE		BETW	EEN PO	INT	
ELEMENT C	LASS	Þ	V QUA	D (4)		
CURVE TYP	Έ		VLIN	E		
SURFACE T	YPE	Þ	V QUA	.D		
SOLID TYP	Έ	⊳	V BLC	CK		
COORDINAT	E SYSTE	M	_			
SET 🗠	V RECTA	NGU	LAR		GRID	1
CLEAR MES	H		CLEA	R GEOM		
ATTACH			AUTO	MESH		₽
CHANGE CI	ASS.	Þ	CHEC	K		₽
CONVERT			DUPL	ICATE		₽
ELEMENT T	YPES	Þ	EXPA	ND		Þ
INTERSECT		P	MOVE			
RELAX		Þ	RENU	MBER		
REVOLVE		Þ	SOLI	DS		Þ
STRETCH		Þ	SUBD	IVIDE		P
SWEEP		P	SYMM	ETRY		Þ
ALL:	SELEC.	۷I	SIB.	OUT L	TOP	
EXIST.	UNSEL.	IN	VIS.	SURF	///BOT	44
BELECT 🗠	/SET////	11	END 3	LIST (#)	
RETURN			MAIN			

This menu contains commands for selecting model entities and for creating sets of entities.

This menu is located on the bottom right-hand side of the Mentat windows *e.g.* MESH GENERATION.

	RELHA		K	SNORBER																	
	REVOLVE		≥ sc	DLIDS 🗠 🖻																	
	STRETCH		🖻 🛛 St	JBDIVIDE 🗠 🗠													A ^Y				
	SWEEP		SI	MMETRY 🖻													T				
	ALL:	SELEC.	VISI	B. OUTL/ TOP/													z	Х			
	EXIST.	UNSEL.	INVI	S. SURF BOT																	
	SELECT 🖻	(SET/////	E	ID LIST (#)	1															1	
, v	RETURN		< M2	AIN A	UNDO	SAVE	DRAW	FILL	RESET	VIEW	TX+	ТҮ+	TZ+	RX+	R¥+	RZ+	ZOOM	IN	SHORTCUTS	\sim	
					UTILS P	FILES P	PLOT 📄	VIEW P	DYN.	MODEL	TX-	TY-	TZ-	RX-	RY-	RZ-	BOX	OUT	SETTINGS	HELP 🖻	
	Enter se. Enter se.	lect node lect elem	nt]	t : *select_elemen list : all_existin	nts ng										F	leady					
	Enter se. Enter se.	lect elem lect elem	∋nt l ∋nt l	list : all_selecte list : * invisible_	ed _selected																

MEEXSoftwar

MENU: SELECT

Select entities e.g. nodes, elements, points, curves, ...

Select entities: METHOD e.g. nodes, elements, points, curves, ...

SINGLE: this method allows the user to select entities <u>singly</u> by specifying their *IDs* or by manual selection (mouse). This method is the *default method*.

PATH: this method allows the user <u>to select connected</u> <u>nodes or points along a path from the first entity</u> <u>specified to the last.</u> You may specify only the beginning and end of the path, or choose entities at various location along the path.

BOX: this method allows the user to select items within a specified region in space therefore a <u>volume</u> <u>assessed by coordinates</u>. All items that fall within the specified box (global coordinate system) become selected.

SINGLE PATH BOX USER BOX PLANE FLOOD EDGE FLOOD FACE FLOOD ASSOCIATION POINT DIST. CURVE DIST. SURFACE DIST. FLANE SURFACE DIST. SELECT/DISTANCE SURFACE DIST. ADWANCED/FROJECTION/SETTINGS MAIN	SELECT METHOD	
SOX USER BOX PLANE FLOOD EDGE FLOOD FACE FLOOD ASSOCIATION POINT DIST. CURVE DIST. SURFACE DIST. FTANE/TOLERANCE SURFACE DIST. ADWANCED/FROJECTION/SETTINGS ADWANCED/FROJECTION/SETTINGS RETURN MAIN	♦ SINGLE	◇ PATH
	◇ BOX	OUSER BOX
CEDGE FLOOD FACE FLOOD ASSOCIATION FOINT DIST. CURVE DIST. SURFACE DIST. FLANE/TOLERANCE S ADVANCED/FROJECTION/SETTINGS ADVANCED/FROJECTION/SETTINGS RETURN MAIN	◇ PLANE	◇ FLOOD
ASSOCIATION POINT DIST. CURVE DIST. SURFACE DIST. FLAME_TOLERANCE S SELECT_DISTANCE S ADVANCED_PROJECTION_SETTINGS S ADVANCED_PROJECTION_SETTINGS MAIN	♦ EDGE FLOOD	◇FACE FLOOD
CURVE DIST.	◇ ASSOCIATION	◇POINT DIST.
FIANE TOLERANCE	♦ CURVE DIST.	♦ SURFACE DIST.
RETURN	FLANE/TOLERANCE///	K/\$///////////////////////////////////
RETURN	SELECT/DISTANCE//	11/11//////////////////////////////////
RETURN	1	V/CD7FH046CD////////////////////////////////////
RETURN AMAIN	APVARZED FROSERIAD	V/\$P\$A/V£P\$\$\$/////////////////////////////////
RETURN AIN		
RETURN ALIN		
RETURN AIN		
RETURN ALIN		
RETURN ALIN		
RETURN A MAIN		
RETURN ~ MAIN		
RETURN ALIN		
RETURN A MAIN		
RETURN		
RETURN A MAIN		
RETURN MAIN		
		WATH

Select entities: MODE e.g. nodes, elements, points, curves, ...

SELECT MODE	
◆ AND	♦ EXCEPT
\diamond INVERT	◇ INTERSECT
RETURN	MAIN

AND: adopting this mode, additionally selected entities are <u>added</u> with those already in the selected list, thus adding them to the list. This mode is the *default mode*.

EXCEPT: by this mode, additionally selected entities are <u>removed</u> from the list of selected entities.

INVERT: in this mode, additionally selected entities are added to the list of selected entities if they do NOT belong to it and are removed if they do already belong to it.

INTERSECT: in this mode, additionally selected entities are intersected with the current list of selected entities to form the new list.

→ I suggest you to do some exercises!!!!

Select entities: STORE e.g. nodes

Marc Mentat 2013.1.0 (64bit) (OpenGL): model3.mud

Once nodes (or elements, or edges, or faces, ...)

stored in a set with a

selected, they might

are

be

Select entities: IDENTIFY SETS e.g. nodes

Agenda

MSC Marc Mentat: Select entities

- Method & Mode;
- Store;
- Identify set.

Thin-walled profile in torsion

- Opened vs closed cross-section;
- Mesh convergence.

References

GOAL:

Openthereferencemodelnamedtorsione_rev01_nolabile.mudthisprofileischaracterized by a lateral crack (open-cross section).It is loaded on the free extremity by an imposedrotation.

Starting from this model, we will compare the response of the open section profile with the homologous closed profile calculating their torsional stiffness.

torsione_rev01_nolabile_open_vs_close.mud

MESH GENERATION Duplicate

Duplicate Combined

The reference model will be **completely** duplicated (*e.g.* nodes, elements, BCs, links), it will be located at a distance of 100 mm from the origin (0,0,0) along X-direction referring to the global coordinate system of the model.

The left-hand side model is the profile with the open cross-section, named OPENED

The right-hand side model is the profile with the open cross-section, named CLOSED.

Therefore, the lateral crack of the right-hand side model will be removed by the SWEEP NODES function as shown here. Finally, the model is ready to be calculated (SUBMIT).

all selected *select clear _____ TOLERANCE CHECK THE COMMAND PROMPT Deleting 3 duplicate nodes! MODE 🔻 MERGE Deleting 0 collapsed elements! SUBMIT MODEL _____ REMOVE UNUSED *check job *update job *submit job l ALL FREE NDS ALL FREE NDS *monitor job ALL FREE PNTS ALL FREE PNTS *save model ADVANCED PROJECTION SETTINGS SELECT TX+ TZ+

SWEEP NODES - CLOSE LATERAL CRACK

at least upper then the crack size;

| I consider a tolerance value equal to 0.2

the tolerance (t) must be:

| lower than the elements size;

therefore 0.1 < t < 20

*set sweep tolerance

*sweep nodes

0.2

Open the results file. Check if the deformation of the models is coherent with you expected!!!

Check the warping of the profile cross-section at their free extremity!! The simplest way is monitoring the displacement of the section along the Z direction (Displacement Z).

OPENED PROFILE: the maximum (minimum) Z-displacement is equal to 4.483 mm (-4.483 mm); CLOSED PROFILE: the maximum (minimum) Z-displacement is equal to 0.57 mm (-0.57 mm).

Moving from a opened to a closed section, the warping decreases significantly.

Check the warping of the profile cross-section at their free extremity!! The simplest way is monitoring the displacement of the section along the Z direction (Displacement Z). Some regions evidence a null deformation along the Z direction; therefore; along this segments, the warping does not occur.

Check if the **rotation along the Z axis (Rotation Z)** of the models is coherent with you expected!!! The models do not rotate at the skew symmetry plane (Z=0), and the maximum rotation is equal to 0.04 radians, and it is located at the free extremity of the model.

Collect the values of **Reaction Moment Z** to compare the stiffness of the two profiles accounting the influence of the lateral crack.

For the same rotation, the reaction moment increases moving from an opened to a closed section profile. Therefore, the torsional stiffness will be increased significantly, too.

04/04/2019

1	Deserves file allocations		input cell					
2	Beam profile dimensions	L.	440					
3	heigth, at the midsurface	_n	118	mm				
4	width, at the midsurface	_D		mm	T I			
5	Wall thickness	_s	2	mm	I ne stiffn	ess of the p	rofiles r	nas
5	fillet radius	_ <u>r</u>	0	mm	adapting	ha Dradt ar	nroach	for
1	section characteristic dimension	<u>_</u>	120	mm	adopting	ine bieut ap	proach	1101
8	modeled profile portion length (half the overall length)	_dz	40	mm	formulae	for the oner	thin sc	actic
9	profile wall perimeter	_p	312	mm	Ionnulae	ior the oper	1 1111 30	50110
0	profile wall midurve enclosed area	_BredtArea	4484	mm ²				
1								
2	Predicted torsional stiffness values				The analy	tical results/	are co	mpa
3	open thin walled section	_Kt_otw	832	mm^4	1			C (1
4	closed thin walled section, Bredt Formula	_Kt_ctw	515545,026	mm^4	nypotnesi	s of free wa	rping o	t the
5								
6	Predicted shear stress values							
7	open thin walled section	_tau_otw	53,8461538	MPa	Roforonce	- .		
8	closed thin walled section, Bredt Formula	_tau_ctw	773,865878	MPa	IVEI EI EI IC	5.		
9					torsion	al stiffr	less e	val
20	material properties							
1	shear modulus (G12 in-plane shear modulus if orthot	_G	26923,0769	MPa	spreads	heet: sea	ction	pro
2					1			
23	imposed displacements							
24	twist rate	_dtheta_dz	0,001	rad/mm				
25	torsional counter-rotation at the profile terminals	_theta_z	0,04	rad				
6								
27	measured reaction torque (of FE models), compl	ete section						
28	open thin walled section, free warping at both ends	Mt otw warp	22351,9	Nmm				
9	closed thin walled section, free warping at both ends	Mt ctw warp	1,39E+07	Nmm				
32								
33	results							
34	profile section torsional stiffness coefficient							
5	open thin walled section, free warping at both ends	_Kt_otw_warp	830,213429	mm^4		formula rigidezza t	ors. Sez. Sottil	li aperte
36	closed thin walled section, free warping at both ends	_Kt_ctw_warp	516378,571	mm^4		formula di Bredt		
39	· · · ·							
40	result comparison		ratio	relative variation				
41	otw, free warp, FE vs theoretical ratio		0,99785268	-0,21%				
42	ctw, free warp, FE vs theoretical ratio		1,00161682	0,16%				
43			,	,				
44	free warp. FE. otw vs ctw ratio		0.00160776	-99.84%				
15			0,000000	00,0170				
6	OTW constrained terminals stiffening factor		733 396266	73239 63%				
17	CTW_constrained terminals stiffening factor		1 21610502	21.61%				
18	or we constrained terminals surrening ractor		1,21010302	21,0170				
10								

files has been analytically calculated roach for the closed section, and the hin section under torsion.

re compared to the FE results, under the ping of the structures.

ss evaluation paom2019 v001.ods; ion property dz 40

The maximum equivalent Von Mise stress occuring across the layers (top, middle, bottom) is plotted, and the opened and the closed profiles achieve the maximum stress value equal to 93 MPa and 1434 MPa, respectively.

op/front op/front/inside

on/hack/outside

From the analysis of the components of stress at the TOP SURFACE, the stress that contributes significantly to the evaluation of the equivalent von Mises stress is the shear stress (Comp. 12 of stress in preferred system). The further stresses are negligible ($\approx 10^{-11}$).

p/front p/front/inside

hack/outsid

From the analysis of the components of stress at the MIDDLE SURFACE, the stress that contributes significantly to the evaluation of the equivalent von Mises stress is the shear stress (Comp. 12 of stress in preferred system). The further stresses are negligible ($\approx 10^{-11}$).

p/front p/front/inside

on/hack/outside

From the analysis of the components of stress at the BOTTOM SURFACE, the stress that contributes significantly to the evaluation of the equivalent von Mises stress is the shear stress (Comp. 12 of stress in preferred system). The further stresses are negligible ($\approx 10^{-11}$).

Thin-walled profile in torsion Opened vs closed cross-section: τ_{12}

Hp) Twist rate: 0.001 rad/mm

In the closed and the opened cases, the stiffness (K_t) evaluated by FE and by the analytical solution are compared, and the relative error has been evaluated as follows:

Error % = $\frac{(FE-Analytical)}{Analytical} * 100 = (ratio - 1) * 100.$

Section	K _t _Analytical [mm⁴]	K _t _ FE [mm⁴]	FE-Analytical ratio	Error %
Closed	515545,03	516378,57	1,00162	0,16
Opened	832,00	830,21	0,99785	-0,21

The comparison of the stiffness, between the closed and the opened FE models, evidences that:

Error % =
$$\frac{(Opened-Closed)}{Closed} * 100 = (ratio - 1) * 100 = -99,84\%.$$

Agenda

MSC Marc Mentat: Select entities

- Method & Mode;
- Store;
- Identify set.

Thin-walled profile in torsion

- Opened vs closed cross-section;
- Mesh convergence.

References

Thin-walled profile in torsion Mesh convergence

GOAL:

Open the reference model named torsione_rev01_nolabile_open_vs_close .mud two profiles are present, characterized by an opened and a closed section, respectively. They are loaded on the free extremity by an imposed rotation.

Starting from this model, we will compare the influence of the mesh size on the evaluation of torsional stiffness by FE.

The element size under investigation is in the range of [20, 10, 5, 2.5, 1.25] mm

The new models is called torsione_rev01_nolabile_open_vs_close_convergence.mud

Thin-walled profile in torsion Duplicate Combined

Thin-walled profile in torsion Duplicate Combined

Detailed view of the models

Thin-walled profile in torsion Sweep

```
| SWEEP NODES - DUPLICATE DUE TO THE ELEMENTS SUBDIVIDE;
| WITHOUT REMOVING THE LATERAL CRACK OF THE OPENED SECTION (left-hand side models)
| the tolerance (t) must be:
| lower then the crack size (0.1);
| lower than the minimum elements size (1.25);
therefore t < 0.1</pre>
| I consider a tolerance value equal to 0.05
*set sweep tolerance
0.05
*sweep nodes
all existing
*select clear
  _____
| CHECK THE COMMAND PROMPT
| Deleting 42191 duplicate nodes!
| Deleting 0 collapsed elements!
```


Detailed view of the Model_2: RBE2 tied nodes

Detailed view of the Model_2: BCs skew-symm

The refinement of the mesh by subdividing the elements required that both the tied nodes of the RBE2, and the nodes involved in the skew-symmetry BCs must be updated.

Make visibile the labels of the RBE2 on the screen, as follows:

PLOT RBE2: SETTING ☑ LABELS REGEN RESET VIEW FILL

As an example, the

procedure

upload

As an example, the upload procedure adopted for the tied nodes of rbe2_4 is:

The number of tied nodes is function of the mesh refinement.

As an example, the tied nodes of RBE2_4 are 367.

If you adopt the BOX METHOD, keep in mind to remove the retained node of RBE2. The retained node should not be included in the tied nodes, it generates an internal conflict based on the kinematic definition applied to the RBE2.

Keep in mind also to update the skewsymmetry BCs.

After the update of RBE2 and BCs, the Models_2 becomes as shown here. Similarly, this procedure must be accomplished for any models.

The models are ready to be computed.

Thin-walled profile in torsion Mesh Convergence: RESULTS

The stiffness (K_t) evaluated by FE and by the analytical solution are compared, and the relative error has been evaluated as follows:

$$-Kt_ratio = \frac{Kt_Opened}{Kt_Closed}.$$

	Element size [mm]	_Mt_ow_warp [Nmm]	_Mt_cw_warp [Nmm]	_Kt_ow_warp [mm⁴]	_Kt_cw_warp [mm⁴]	_Kt_ratio
Analytical*	/	/	/	832,0	515545,0	0,00161
Model_0	20,00	22351,9	1,39025E+07	830,2	516378,6	0,00161
Model_1	10,00	22309,4	1,39024E+07	828,6	516374,9	0,00160
Model_2	5,00	22234,7	1,39024E+07	825,9	516374,9	0,00160
Model_3	2,50	22129,0	1,39023E+07	821,9	516371,1	0,00159
Model_4	1,25	22038,4	1,39022E+07	818,6	516367,4	0,00159

* exact solution for profile with infinitesimal thickness (t \rightarrow 0)

The influence of the mesh size on the torsional stiffness evalution for closed section is negligible, and it is of limited relevance for the opened section.

	Error_Kt_ow_	Error_Kt_cw_
	warp [%]	warp [%]
Model_0	1,42%	0,0022%
Model_1	1,23%	0,0014%
Model_2	0,89%	0,0014%
Model_3	0,41%	0,0007%

Relative error evaluated for the FE models refering to the Model_4.

Agenda

MSC Marc Mentat: Select entities

- Method & Mode;
- Store;
- Identify set.

Thin-walled profile in torsion

- Opened vs closed cross-section;
- Mesh convergence: Critical aspects
 References

Mesh convergence

Critical Aspects: Case A

Mesh Convergence Critical Aspects: Case A

48

Mesh Convergence Critical Aspects: Case B

Lamè solution: $\sigma_R|_{r=Ri} = -5 \text{ MPa}$ $\sigma_C|_{r=Ri} = 8.33 \text{ MPa}$

$$\sigma_r \mid_{R \text{ int}} = -p_{\text{int}}$$
$$\sigma_c \mid_{R \text{ int}} = p_{\text{int}} \frac{R_{est}^2 + R_{\text{int}}^2}{R_{est}^2 - R_{\text{int}}^2}$$

Mesh Convergence Critical Aspects: Case B

Mesh Convergence Critical Aspects: Case B

Asymptotic curve of the FE results with respect to the analytical solution.

51

Mesh Convergence Critical aspects: singularity occurrence

Agenda

MSC Marc Mentat: Select entities

- Method & Mode;
- Store;
- Identify set.

Thin-walled profile in torsion

- Open vs close cross-section;
- Mesh convergence.

References

References

LAB Marc Mentat files saved as:

torsione_rev01_nolabile.mud
torsione_rev01_nolabile_open_vs_close.mud
torsione_rev01_nolabile_open_vs_close_mesh_convergence.mud

thin_walled_profile_in_torsion_open_vs_close.proc
thin_walled_profile_in_torsion_open_vs_close_mesh_convergence.proc
torsional_stiffness_evaluation_paom2019_v001.ods

Books and papers:

Strozzi, A. (1998). Costruzione di Macchine, Pitagora Editrice, Bologna. Sinclair, G. B. (2004). Stress singularities in classical elasticity-I: Removal, interpretation, and analysis. Applied Mechanics Reviews, 57(4), 251-298. Sinclair, G. B. (2004). Stress singularities in classical elasticity-II: Asymptotic identification. Applied Mechanics Reviews, 57(5), 385-439.

