## 0.0.1 Rigid body link RBE2

A master (or retained, control, independent, etc.) C node is considered, whose coordinates are defined as  $x_C, y_C, z_C$  in a (typically) global reference system, along with a set of  $n P_i$  nodes whose coordinates are  $x_i, y_i, z_i$ .

A kinematic link is to be established such that the Degree of Freedom (DOF)s – or a subset of them – associated to the  $P_i$  nodes follow the rototranslations of the C control according to the rigid body motion laws.

In the case of a fully constrained  $P_i$  node we have

| $\begin{bmatrix} u_i \end{bmatrix}$ |   | Γ1 | 0 | 0 | 0              | $+(z_i - z_C)$ | $-(y_i - y_C)$ - |   | $u_C$                 |
|-------------------------------------|---|----|---|---|----------------|----------------|------------------|---|-----------------------|
| $v_i$                               | = | 0  | 1 | 0 | $-(z_i - z_C)$ | 0              | $+(x_i - x_C)$   |   | $v_C$                 |
| $w_i$                               |   | 0  | 0 | 1 | $+(y_i - y_C)$ | $-(x_i - x_C)$ | 0                |   | $w_C$                 |
| $\theta_i$                          |   | 0  | 0 | 0 | 1              | 0              | 0                | • | $\theta_C$            |
| $\phi_i$                            |   | 0  | 0 | 0 | 0              | 1              | 0                |   | $\phi_C$              |
| $\psi_i$                            |   | 0  | 0 | 0 | 0              | 0              | 1 _              |   | $\downarrow \psi_C$ _ |
|                                     |   | -  |   |   |                |                |                  |   |                       |

(1)

where u, v, w  $(\theta, \phi, \psi)$  are the translation (rotation) vector components with respect to the x, y, z cartesian reference system. A subset of the above DOF dependency relations may be cast to obtain a partial constraining of the  $P_i$  node; a free relative motion of such node with respect to the rigid body is allowed at the unconstrained DOFs.

External actions that are applied to tied  $P_i$  DOFs are reduced to the master node in form of a statically equivalent counterpart; the contributions deriving from each  $P_i$  node are finally accumulated.

## 0.0.2 Distributed load / averaged motion link RBE3

## YYY

Si considera un nodo dipendente C di coordinate  $x_C, y_C, z_C$ , detto nodo di controllo (alle forze... altrimenti la definizione è impropria), ed una nuvola di n nodi indipendenti  $P_i$  di coordinate  $x_i, y_i, z_i$  e con peso relativo assegnato  $q_i$ .

Si considera applicato al nodo C un sistema di azioni esterne nella forma delle tre componenti di forza  $U_C, V_C, W_C$  e nelle tre componenti di momento  $\Omega_C, \Phi_C, \Psi_C$ , riunite nel vettore

$$\underline{\mathbf{F}}_C = \begin{bmatrix} U_C \ V_C \ W_C \ \Omega_C \ \Phi_C \ \Psi_C \end{bmatrix}^T$$

Si definisce un centro di massa  ${\cal G}$  della nuvola di punti, le cui coordinate sono al solito

$$x_G = \frac{\sum_i q_i x_i}{\sum_i q_i}, \quad y_G = \frac{\sum_i q_i y_i}{\sum_i q_i}, \quad z_G = \frac{\sum_i q_i z_i}{\sum_i q_i}.$$
 (2)

Si suppone inoltre che il sistema di riferimento Gxyz sia **principale** d'inerzia per la distribuzione di pesi; nel caso tale ipotesi non sia verificata occorre procedere come segue:

- cambio di sistema di riferimento da terna xyz ad una terna ausiliaria  $\xi \eta \zeta$  con orientazione principale d'inerzia per la specifica distrubuzione RBE3;
- applicazione della procedura sotto descritta utilizzando posizioni nodali e componenti di forza/momento scomposte secondo la terna ausiliaria  $\xi \eta \zeta$  in luogo della predefinita xyz;
- trasformazione inversa delle quantità risultanti da terna ausiliaria  $\xi \eta \zeta$  a terna originale xyz.

Si definisce quindi una prima relazione di dipendenza cinematica, per cui le rototraslazioni

$$\underline{\delta}_C = \left[ u_C \ v_C \ w_C \ \theta_C \ \phi_C \ \psi_C \right]^T$$

di C sui tre assi x, y, z sono definite in funzione delle rototraslazioni

$$\underline{\delta}_G = [u_G \ v_G \ w_G \ \theta_G \ \phi_G \ \psi_G]^T$$

del centro di massa G secondo il vincolo di rototraslazione rigida

| ſ | $u_C$     |    | [1] | 0 | 0 | 0              | $+(z_C-z_G)$ | $-(y_C - y_G)$ |    | $u_G$                 |
|---|-----------|----|-----|---|---|----------------|--------------|----------------|----|-----------------------|
|   | $v_C$     | =  | 0   | 1 | 0 | $-(z_C-z_G)$   | 0            | $+(x_C-x_G)$   |    | $v_G$                 |
|   | $w_C$     |    | 0   | 0 | 1 | $+(y_C - y_G)$ | $-(x_C-x_G)$ | 0              |    | $  w_G$               |
|   | $	heta_C$ |    | 0   | 0 | 0 | 1              | 0            | 0              |    | $\theta_G$            |
|   | $\phi_C$  |    | 0   | 0 | 0 | 0              | 1            | 0              |    | $\phi_G$              |
|   | $\psi_C$  |    | 0   | 0 | 0 | 0              | 0            | 1              |    | $\downarrow \psi_G$ . |
|   |           | `` |     |   |   |                | Lice         |                | /  |                       |
|   |           |    |     |   |   |                | Ecc          |                | (; | 3)                    |

già visto per le RBE2.

Tale relazione cinematica può essere imposta solo su un sottoinsieme dei gg.d.l. associati al nodo C, lasciando svincolati (e indipendenti) i restanti.

Come osservato al paragrafo (??), all'imposizione di tali relazioni cinematiche è associata una riduzione a nuovo punto di applicazione Gdelle azioni agenti su C, con l'introduzione di opportuni momenti di trasporto come da

$$\underline{\mathbf{F}}_{G} = \begin{bmatrix} \underline{\mathbf{L}}_{CG} \end{bmatrix}^{T} \cdot \underline{\mathbf{F}}_{C}, \quad \underline{\mathbf{F}}_{G} = \begin{bmatrix} U_{G} \ V_{G} \ W_{G} \ \Theta_{G} \ \Phi_{G} \ \Psi_{G} \end{bmatrix}^{T}$$
(4)

Tale vincolo deriva dall'imposizione di pari lavoro virtuale dei sistemi di forze su C e su G

$$\mathcal{L}_{C} = \underline{\delta}_{C}^{T} \underline{\mathbf{F}}_{C} = \left(\underline{\mathbf{L}}_{CG} \underline{\delta}_{G}\right)^{T} \underline{\mathbf{F}}_{C} = \underline{\delta}_{G}^{T} \underline{\mathbf{L}}_{CG}^{T} \underline{\mathbf{F}}_{C} = \underline{\delta}_{G}^{T} \underline{\mathbf{F}}_{G} = \mathcal{L}_{G} \quad (5)$$

Si definisce quindi una seconda relazione di dipendenza per cui da una parte lo spostamento del nodo G risulti la media pesata degli spostamenti ai nodi  $P_i$ , ovvero

$$u_G = \frac{\sum_i q_i u_i}{\sum_i q_i}, \quad v_G = \frac{\sum_i q_i v_i}{\sum_i q_i}, \quad w_G = \frac{\sum_i q_i w_i}{\sum_i q_i}, \tag{6}$$

e dall'altra le forze applicate in Ce ridotte <br/>aGsi distribuiscano ai nodi ${\cal P}_i$ secondo i pesi dati, ossia

$$U'_{i} = U_{G} \frac{q_{i}}{\sum_{i} q_{i}}, \quad V'_{i} = V_{G} \frac{q_{i}}{\sum_{i} q_{i}}, \quad W'_{i} = W_{G} \frac{q_{i}}{\sum_{i} q_{i}}.$$
 (7)

Per quanto riguarda la distribuzione dei momenti ridotti a G sui nodi  $P_i$ , si preferisce operare in termini di una seconda quota di forze nodali  $U''_i, V''_i, W''_i$  piuttosto che in termini di quote momento  $\Theta'_i, \Phi'_i, \Psi'_i$ .

Riferendosi a Figura 1, si considerano le componenti di momento  $\Theta_G, \Phi_G, \Psi_G$  singolarmente nella riduzione a sistemi di forze equivalenti.

Preso l'esempio particolare della componente z di momento  $\Psi_G$ , ad essa viene sostituito un sistema equivalente di forze  $\underline{F}_{\Psi,i}$  distribuite ai punti  $P_i$  in sole componenti x, y tali da avere

• retta d'azione sul piano x, y, normale alla congiungente  $G - P_i$ ivi proiettata

 $\oplus$ 

 $\oplus$ 

 $\oplus$ 



Figure 1: Schema distribuzione momenti

- verso coerente con il momento stesso
- modulo proporzionale alla distanza proiettata

$$r_{z,i} = \sqrt{\Delta x_i^2 + \Delta y_i^2}, \quad \Delta x_i = x_i - x_G, \quad \Delta y_i = y_i - y_G \quad (8)$$

e al pes<br/>o $q_i$  del nodo

• momento risultante della distribuzione pari <br/>a $\Psi_G \hat{k}$ 

In particolare risulta

 $\oplus$ 

Œ

 $\oplus$ 

$$\underline{\mathbf{F}}_{\Psi,i} = \frac{\Psi_G q_i}{\sum_j q_j r_{z,j}^2} \left( -\Delta y_i \, \underline{\hat{\imath}} + \Delta x_i \, \underline{\hat{\jmath}} \right) \tag{9}$$

e, una volta definiti

$$r_{x,i} = \sqrt{\Delta y_i^2 + \Delta z_i^2}, \quad r_{y,i} = \sqrt{\Delta z_i^2 + \Delta x_i^2}, \quad \Delta z_i = z_i - z_G$$

si hanno per le altre componenti di momento le forme

$$\underline{\mathbf{F}}_{\Theta,i} = \frac{\Theta_G q_i}{\sum_j q_j r_{z,j}^2} \left( -\Delta z_i \, \underline{\hat{j}} + \Delta y_i \, \underline{\hat{\mathbf{k}}} \,, \right) \tag{10}$$

$$\underline{\mathbf{F}}_{\Phi,i} = \frac{\Phi_G q_i}{\sum_j q_j r_{y,j}^2} \left( -\Delta x_i \, \underline{\hat{\mathbf{k}}} + \Delta z_i \, \underline{\hat{\mathbf{l}}} \right) \tag{11}$$

~

le quali, raccolte per componenti e in notazione più compatta, danno

$$U_i''\hat{\imath} + V_i''\hat{\jmath} + W_i''\hat{k} = q_i \begin{vmatrix} \hat{\imath} & \hat{\jmath} & k\\ \frac{\Theta_G}{\sum_j q_j r_{x,j}^2} & \frac{\Phi_G}{\sum_j q_j r_{y,j}^2} & \frac{\Psi_G}{\sum_j q_j r_{z,j}^2} \\ \Delta x_i & \Delta y_i & \Delta z_i \end{vmatrix}$$
(12)

I termini in (12) andranno sommati a quelli ricavati in (7), per cui la forza distribuita dal link RBE3 sull'*i*-esimo nodo risulterà

$$\underline{\mathbf{F}}_{i} = U_{i}\hat{\imath} + V_{i}\hat{\jmath} + W_{i}\hat{k} = (U_{i}' + U_{i}'')\hat{\imath} + (V_{i}' + V_{i}'')\hat{\jmath} + (W_{i}' + W_{i}'')\hat{k}$$
(13)

o, in forma algebrica

 $\oplus$ 

$$\begin{bmatrix} U_i \\ V_i \\ W_i \end{bmatrix} = q_i \begin{bmatrix} \frac{1}{\sum_j q_j} & 0 & 0 & 0 & +\frac{\Delta z_i}{\sum_j q_j r_{x,j}^2} & -\frac{\Delta y_i}{\sum_j q_j r_{x,j}^2} \\ 0 & \frac{1}{\sum_j q_j} & 0 & -\frac{\Delta z_i}{\sum_j q_j r_{x,j}^2} & 0 & +\frac{\Delta x_i}{\sum_j q_j r_{x,j}^2} \\ 0 & 0 & \frac{1}{\sum_j q_j} & +\frac{\Delta y_i}{\sum_j q_j r_{x,j}^2} & -\frac{\Delta x_i}{\sum_j q_j r_{y,j}^2} & 0 \end{bmatrix} \underbrace{\begin{bmatrix} U_G \\ V_G \\ W_G \\ \Theta_G \\ \Phi_G \\ \Psi_G \end{bmatrix}}_{\stackrel{L}{\underline{I}}_{GP,i}^T}$$

$$\Theta_i = \Phi_i = \Psi_i = 0 \qquad (14)$$

$$\Theta_i = \Phi_i = \Psi_i = 0 \qquad (15)$$

Tale relazione è definita in forma specifica per ogni nodo  $P_i$ .

Alla distribuzione di forza appena descritta è associata la forma agli spostamenti

$$\underline{\delta}_{G} = \underbrace{\left[ \underline{\underline{L}}_{GP,1} \cdots \underline{\underline{L}}_{GP,i} \cdots \underline{\underline{L}}_{GP,n} \right]}_{\underline{\underline{L}}_{GP}} \underbrace{\left[ \begin{array}{c} u_{1} \\ v_{1} \\ w_{1} \\ u_{2} \\ \vdots \\ v_{n} \\ w_{n} \end{array} \right]}_{\underline{\delta}_{\forall i}}$$
(16)

ove  $\underline{\underline{L}}_{GP}$  è definita per blocchi. Tale forma agli spostamenti definisce il moto del baricentro G in funzione del moto dei punti della distribuzione; a titolo di esempio lo spostamento  $u_G$  risulta definito dall'Eq. (16) come

$$u_G = \frac{\sum_i q_i \left< [1, 0, 0], [u_i, v_i, w_i] \right>}{\sum_i q_i}$$
(17)

mentre la rotazione  $\psi_G$  risulta definita come

$$\psi_G = \frac{\sum_i q_i \left\langle \left[ -\Delta y_i, +\Delta x_i, 0 \right], \left[ u_i, v_i, w_i \right] \right\rangle}{\sum_i q_i r_{z,i}^2}$$
(18)

ove  $\langle \cdot, \cdot \rangle$  è il consueto prodotto scalare.

Ambo le forme risultano riconducibili ad una proiezione pesata e normalizzata degli spostamenti dei nodi indipendenti  $P_i$  su forme di moto elementari della distribuzione di punti, ad esempio una traslazione x come in (17) o una rotazione (G, z) come in (18). Si può inoltre notare che i numeratori delle (17) e (18) sono forme integrate nel tempo della quantità di moto e del momento della quantità di moto della distribuzione<sup>1</sup>, mentre i denominatori sono rispettivamente una massa e un momento d'inerzia.

Ricordando infine la (3) si può infine esprimere per il link RBE3 una condizione cinematica complessiva

$$\underline{\delta}_{c} = \underline{\mathrm{L}}_{CG} \cdot \underline{\mathrm{L}}_{GP} \cdot \underline{\delta}_{\forall i} \tag{19}$$

ed una caratteristica di distribuzione delle forze ai nodi  $P_i$ 

$$\underline{\mathbf{F}}_{i} = \underline{\underline{\mathbf{L}}}_{GP,i}^{T} \cdot \underline{\underline{\mathbf{L}}}_{CG}^{T} \cdot \underline{\mathbf{F}}_{C}, \quad i = 1 \dots n.$$
<sup>(20)</sup>

<sup>&</sup>lt;sup>1</sup>Tali quantità sono integrate da una condizione iniziale scarica/indeformata ad una condizione finale sollecitata/deformata; appaiono infatti gli spostamenti nodali al posto delle velocità nodali.